文章詳目資料

Journal of Aeronautics, Astronautics and Aviation . Series A EIScopus

  • 加入收藏
  • 下載文章
篇名 Investigation of Temperature-Dependence of Zeta Potential Using Molecular Dynamics Simulation of Nanosca Electroosmotic Flows
卷期 39:4
作者 Yen, T. H.Soong, C. Y.Tzeng, P. Y.
頁次 251-263
關鍵字 NanofluidicsElectroosmotic flowMolecular dynamicsZeta potentialEI
出刊日期 200712

中文摘要

英文摘要

The objective of the present work is to investigate temperature-dependence of zeta potential in nanoscale electroosmotic flows (EOF). Molecular dynamics (MD) simulations for EOF is performed with a W-molecule used as an approximate model for water. To explore the influences of the particle mass, various electrolytes such as a fictitious
model W± , the commonly used KCl and NaCl. At various temperature of
the solid-fluid system, the present molecular dynamics (MD) results
demonstrated that the conventional Smoluchowski equation is still valid in
nanoscale electroosmotic flow but the temperature-dependence of the
critical parameters such as electric permittivity and fluid viscosity have to be considered. At condition of low ion concentration, the electric double layer is thick and Smoluchowski equation is not appropriate. Physical mechanisms are explored in either viewpoint of EOF velocity or ions concentration. The present MD results demonstrate that (1) high bulk ion concentration leads to a decrease in zeta potential; (2) the sign of wall charge affects conterion concentration but the magnitude of zeta potential is little influenced; (3) high wall density enhances fluid slippage and in turn results in high fluid velocity and zeta potential; and (4) particle size has influences on the magnitude of zeta potential.

相關文獻