文章詳目資料

International Journal of Science and Engineering

  • 加入收藏
  • 下載文章
篇名 A PHY-MAC Cross-Layer Approach for Sleep Scheduling in LTE/LTE-A Uplink
卷期 5:4
並列篇名 在LTE/LTE-A上行網路下的一個跨層睡眠排程方法
作者 陳建志楊雙丞王禕安李世明劉建凱
頁次 015-022
關鍵字 4GLTE/LTE-Across-layer designQoSsleep schedulingpower allocationDRXwireless networks跨層設計服務品質睡眠排程功率分配無線網路
出刊日期 201512
DOI 10.6159/IJSE.2015.(5-4).03

中文摘要

無線行動裝置支援行動性,使用電池供給裝置電力, 但只能維持裝置有限時間的運作;以3G手機為例,根據 實際測試,手機運作時以無線通訊介面損耗的電力最為可 觀,佔全部耗電比例的40% (處理器為20%,顯示螢幕則 為13%),而最新的4G無線存取技術採用高效率的 OFDMA(Orthogonal Frequency-Division Multiple Access)搭 配MIMO(Multi-input Multi-output)增進傳輸速率,無線網 路介面的耗電因此更多。在本論文中,我們討論了在 3GPP LTE/ LTE-A(3rd Generation Partnership Project Long Term Evolution/ Long Term Evolution -Advanced)的無線網 路下,睡眠調度的跨層設計。設計同時考慮了媒體存取控 制(Medium Access Control; MAC )層的多用戶睡眠調度 (籍著 DRX/ DTX (Discontinuous Reception/ Discontinuous Transmission)參數的設置)和實體層功率和無線電資源分 配。本論文提出的方法還同時考慮了延遲時間、封包遺失 率和最大發射功率的限制下,使行動裝置能夠獲得更長的 電池續航時間和提升無線資源的使用率。本研究的設計透 過模擬進行比較與驗證,可以發現對省電效能有很大的改善。

英文摘要

To support mobility, wireless mobile devices are powered by batteries; however, a battery can only store a limited amount of energy. Take a 3G handheld device for example, according to the real test, the wireless interface consumes the largest proportion of the total amount of power (up to 40%). In particular, the 4G wireless communications adopt OFDMA and MIMO as the wireless access technology, where the former improves the bandwidth efficiency and the latter enhances throughput. In this case, the wireless interface in a mobile device will consume much more power than that for 3G devices. To save power, we have designed a PHY-MAC cross-layer sleep scheduling method which considers power saving, energy efficiency, and QoS at the same time over the 4G LTE/LTE-A wireless networks. Several papers have been published or submitted and three master theses have been accomplished. In this paper, we discuss a cross-layer design of sleep scheduling in 3GPP LTE/LTE-A wireless networks. The design jointly considers the Medium Access Control (MAC) layer multi-user sleep scheduling (via the settings of DRX/DTX parameters) and the physical layer power and radio resource allocations. The new approach enables UEs to gain longer battery life time and better utility of radio resource while guarantee the delay, packet drop rate, and maximum transmit power constraints. The design is validated through comparisons with simulation results and we find significant improvement on power saving.

相關文獻