文章詳目資料

化工

  • 加入收藏
  • 下載文章
篇名 奈米材料在光催化產氫的應用
卷期 66:1
作者 吳俊哲李泔涓
頁次 036-048
關鍵字 氫能奈米材料水裂解光催化反應光電化學反應Hydrogen energyNanomaterialsWater splittingPhotocatalytic reactionPhoto-electrochemical reaction
出刊日期 201902

中文摘要

氫能由於具有綠色(乾淨和可再生能源 )、可儲存和高能量密度的特性,而被認為 是化石燃料時代之外最具有前景的能源之 一。氫能來源又以太陽光能轉換產生氫氣的 方式最具吸引力和可持續發展,乃因此方法 具有高能量轉換效率和零碳排放的優點。在 太陽能轉換生成氫氣的方法中,則以半導體 奈米材料的光催化裂解水產氫技術被認為是 實現太陽能轉換生成氫能最重要的手段之 一。因奈米結構材料具有獨特的特性和優異 的光催化性能進而能夠被廣泛研究於光催 化裂解水產氫應用。此外,光催化奈米材料 的表面特性是重要的,因其決定多數的表面 相關性質,如光吸收、電荷轉移和與污染物 的相互作用等,然硫系化物在無犧牲試劑的 條件下,經光的照射後會有光腐蝕的情況發 生。因此,為增強其光催化活性,適當的能 帶改善工程是必要的,因適當的改質可提升 硫系化物對太陽光的捕獲率、光生電子/電 洞的分離率,並同時增強硫系化物的穩定 性,進而可改善光催化活性。而奈米材料經 由太陽能產氫的水裂解系統,主要包括有光 催化、光電化學和光伏電解系統。

英文摘要

Hydrogen is one of the promising energy sources beyond fossil fuel era due to its green (a clean and renewable energy source), storable and high energy density characteristics. The production of hydrogen fuels by solar energy is an attractive and sustainable solution to the energy problem owing to its high-energy conversion efficiency and zero-carbon emission. The technology of semiconductor nanomaterials for photocatalytic water splitting has been considered as one of the most promising approaches to achieve the conversion from solar energy to hydrogen energy. Nanostructured materials have been extensively studied for solar hydrogen production from water because of their distinctive properties and promise to offer superior photocatalytic performance. In addition, surface characteristics of photocatalytic nanomaterials are of importance since they determine plenty of surface related properties, such as light absorption, charge transfer, interactions with the pollutants, and so on. Moreover, chalcogenide nanomaterials have been intensively studied due to their luminescence and photocatalytic characteristics.However, chalcogenides would undergo photochemical decomposition into the components when irradiated in the absence of sacrificial electron donors. A suitable band engineering is necessitated to improve the photocatalytic activity as it could increase the solar energy harvestable ratio, photoexcited electron/hole pair separation, and photocatalytic stability. In addition, the systems for water splitting in the production of hydrogen via sunlight can be generally classified as photocatalytic, photo-electrochemical, and photovoltaic-electrolysis systems.

相關文獻