文章詳目資料

體育學報 TSSCI

  • 加入收藏
  • 下載文章
篇名 高強度間歇運動與連續式運動後攝取高脂 飲食對介白素-6 與腦神經滋養因子的影響
卷期 52_S
並列篇名 The interleukin-6 and brain-derived neurotrophic factor response to high-fat diet after high-intensity interval exercise and continuous exercise
作者 李佳倫徐煒杰
頁次 073-090
關鍵字 持續時間運動強度免疫代謝反應餐後durationexercise intensityinflammatorymetabolic responsepostprandialTSSCI
出刊日期 201903
DOI 10.3966/10247297201903520S006

中文摘要

緒論:中強度連續運動 (MICE) 能夠降低動脈硬化與心血管疾病的風險,最近低量 高強度間歇運動 (HIIE) 已被認為對成年人具時間效率且能夠避免慢性疾病。高脂餐可能 會改變免疫和腦神經滋養因子 (BDNF) 的反應,然而目前探討不同運動和高脂餐介入對 免疫和腦神經滋養因子的研究結果不明確,因此本研究旨在比較 MICE 與HIIE 對高脂餐 後的介白素-6 (IL-6) 與BDNF 的影響。方法:36 名男性隨機分派至晚上進行三種試驗: HIIE (85% 最大攝氧量衝刺10 次1 分鐘,間歇休息2 分鐘)、MICE (65% 最大攝氧量進 行有氧運動50 分鐘) 以及控制組。運動後隔日上午,受試者經過12 小時禁食後攝取每公 斤體重13 大卡的高脂餐。採集血液是在第一天的運動前、後,第二天的高脂餐前與餐後 每隔1 小時至第4 小時。結果:三種試驗之間的IL-6 與BDNF 基礎值未達顯著差異 (p > .05)。HIIE (p = .02) 與MICE (p = .00) 運動後的IL-6 濃度高於控制組,但三種試驗之 間在其他時間點未達顯著差異 (p > .05)。運動前至運動後,MICE 的IL-6 曲線下面積顯 著高於HIIE 與控制組 (p = .00 - .03);運動後至高脂餐前,MICE 和HIIE 亦顯著高於控制 組 (p = .00 - .05)。HIIE 與MICE 於運動後的BDNF 濃度顯著高於控制組 (p = .01),但 HIIE 與MICE 之間無差異。攝取高脂餐後的BDNF 在三組之間無顯著差異 (p > .05)。運 動後12 小時,HIIE 和MICE 的BDNF 曲線下面積分別高於控制組23% 與21%,但HIIE 與控制組達顯著差異 (p = .05) 而MICE 與控制組未達顯著差異 (p = .08)。結論:單次 HIIE 或MICE 運動後皆會增加IL-6 和BDNF 濃度,但只有HIIE 能明顯維持較長時間的 高濃度BDNF,而此效果在隔日攝取高脂餐後就會逐漸趨緩。

英文摘要

Introduction: The moderate-intensity continuous exercise (MICE) is aiming to decrease the risks of atherosclerosis and cardiovascular disease. Recently, low-volume high-intensity interval exercise (HIIE) has been considered as a time-efficient approach to prevent these chronic diseases in adults. High-fat meal (HFM) may affect inflammatory and brain-derived neurotrophic factor (BDNF); however, the effects of different exercise and high-fat meal intervention on interleukin-6 (IL-6) and BDNF is unclear. The purpose of this study was to compare the effects of MICE and HIIE on IL-6 and BDNF followed the high-fat meal. Methods: Thirty-six males were randomly assigned to three trials which exercising in the evening: a HIIE (10 × 1 min sprints at 85% of maximal oxygen uptake with a 2 min resting interval between intense exercises), a MICE (aerobic exercise at 65% of maximal oxygen uptake for 50-min), and a control (CON). The next morning after exercising, participants consumed a HFM of 13 kcal/kg body mass after a 12 hr overnight fast. Blood draws were performed immediately before and after exercising on day 1, before HFM and then hourly until 4 hr on day 2. Results: At baseline, there was no difference between three trials for IL-6 and BDNF levels (p > .05). There was evidence of acute increase in IL-6 concentration in response to the HIIE (p = .02) and MICE (p = .00) compared to CON after exercise, but no significant differences observed at other time points among HIIE, MICE, and CON (p > .05). The area under curve (AUC) of IL-6 was significantly higher in MICE than those in HIIE and CON from pre- to post-exercise (p = .00-0.03), and MICE and HIIE had higher IL-6 AUC compared with CON from post-exercise to pre-meal (p = .00-0.05). BDNF increased after exercise in HIIE and MICE compared with CON (p = .01), but HIIE and MICE were not different. No significant difference in BDNF after HFM among three trials (p > .05). During 12 hr post-exercise, BDNF AUC was increased by 23% and 21% in HIIE and MICE compared with CON respectively, but HIIE did reach a significantly different (p = .05) rather than MICE (p = .08). Conclusion: Acute HIIE and MICE equally increased IL-6 and BDNF concentrations response to the exercise, but only HIIE could maintain a longer and higher BDNF level after HIIE. However, the effect of the BDNF level attenuated gradually after ingestion of HFM in the morning after acute exercise in the evening.

相關文獻